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Abstract Ammonia surface flux is bidirectional; that is, net flux can be either upward or downward. In
fertilized agricultural croplands and grasslands there is usually more emission than deposition especially in
midday during warmer seasons. In North America, most of the ammonia emissions are from agriculture
with a significant fraction of that coming from fertilizer. A new bidirectional ammonia flux modeling system
has been developed in the Community Multiscale Air Quality (CMAQ) model, which has close linkages
with the Environmental Policy Integrated Climate (EPIC) agricultural ecosystem model. Daily inputs from
EPIC are used to calculate soil ammonia concentrations that are combined with air concentrations in CMAQ
to calculate bidirectional surface flux. The model is evaluated against surface measurements of NH3

concentrations, NH4
+ and SO4

2− aerosol concentrations, NH4
+ wet deposition measurements, and satellite

retrievals of NH3 concentrations. The evaluation shows significant improvement over the base model
without bidirectional ammonia flux. Comparisons to monthly average satellite retrievals show similar
spatial distribution with the highest ammonia concentrations in the Central Valley of California (CA), the
Snake River valley in Idaho, and the western High Plains. In most areas themodel underestimates, but in the
Central Valley of CA, it generally overestimates ammonia concentration. Case study analyses indicate
that modeled high fluxes of ammonia in CA are often caused by anomalous high soil ammonia loading from
EPIC for particular crop types. While further improvements to parameterizations in EPIC and CMAQ
are recommended, this system is a significant advance over previous ammonia bidirectional surface
flux models.

Plain Language Summary Ammonia is one of many pollutants that are added to the air by
human activities. Ammonia contributes to degraded air quality mainly because it adds to the concentration
of very fine particles suspended in the air that are called aerosols. Hazy conditions with poor visibility
are often the result of high concentrations of aerosols. Also, breathing air with high amounts of aerosols is
bad for human health. Ammonia can get into water bodies where it contributes to algae growth and
fish kills due to low oxygen. Much of the ammonia that gets into the air comes from fertilizer in agricultural
fields. This paper is about improved methods for modeling the ammonia from agricultural fertilizer by
linking together an air quality computer model with an agricultural management model. The agricultural
model predicts the amount and types of fertilizer that farmers use and the amount of ammonia in
the soil. The air quality model then uses information from the agriculture model to predict how much
ammonia gets into the air. The study describes these models and shows how well they predict the amount of
ammonia in the air compared to ground‐based and satellite measurements.

1. Introduction

Inorganic reduced forms of reactive nitrogen (N; e.g., ammonia NH3 and ammonium NH4
+) are important

precursors to fine particulate matter (PM2.5), which is known to be a serious human health hazard
(Anderson et al., 2012; Kim et al., 2015) and is subject to regulation through the National Ambient Air
Quality Standards (NAAQS). About 30% of total NH3 emissions in the United States come from fertilization
of agricultural grass and crop production and 54% come from animal husbandry (Xing et al., 2013) based on
the U.S. Environmental Protection Agency (EPA) 2002 National Emissions Inventory (NEI). Most of N
applied to agricultural lands are in the form of synthetic fertilizer. In addition to contributing to the
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atmospheric aerosol burden, N also runs off fields into other ecosystems and water bodies where it contri-
butes to environmental degradation through eutrophication, acidification, and loss of biodiversity (Boyle,
2017; Phoenix et al., 2012; Stevens et al., 2004).

There are a range of modeling approaches to estimate ammonia emissions from fertilization, which vary
greatly in their complexity and data requirements. A common approach is to use emission factors multi-
plied by fertilizer sales data with simple seasonal functions. For example, the 2011 U.S. EPA NEI calcu-
lates ammonia emissions using the Carnegie Mellon University Ammonia Model v.3.6 (Goebes et al.,
2003), which distributes county‐level fertilizer sales to agricultural land on a monthly basis (U.S. EPA,
2015). Balasubramanian et al. (2015) describe an alternative method that also uses fertilizer sales data
but with improved spatial representation from high resolution crop data and daily temporal information
from the Denitrification Decomposition (DNDC) model. In addition, Hamaoui‐Laguel et al. (2014) devel-
oped a 1‐D mechanistical model for estimating ammonia emissions from fertilized agricultural fields with
management practices, meteorology, and soil property information. In recent years some air quality mod-
els have transitioned from emission factor parameterizations for NH3 emissions to more complex process‐
based models including algorithms for bidirectional surface flux of NH3 particularly from fertilized agri-
culture land. Rather than using separate estimates of NH3 emissions from an emission inventory com-
bined with dry deposition (i.e. one‐way flux from air to surface), bidirectional algorithms obtain
estimates of the compensation concentrations in the surface, primarily soil, and leaf tissue, then compute
the net NH3 fluxes as functions of concentration difference between air and surface (Massad et al., 2010).
A key issue for bidirectional flux models is the specification of the ammonia concentrations in the surface
components such as soil and stomata. At the air‐surface interface inside leaf stomatal cavities and in soil
pores, gas‐phase ammonia concentrations can be estimated by applying Henry's law and thus requiring
equilibrium with aqueous concentrations of NH4

+ and H+ in the apoplast leaf tissues and soil water
(Sutton et al., 2000). Air NH3 concentrations are computed from the ammonia emission potential Γ, which
is the ratio of NH4

+ to H+.

Ammonia bidirectional flux models have recently been applied in several regional and global atmospheric
chemistry models. For example, Zhang et al. (2010) have implemented a bidirectional flux model for NH3,
which uses a resistance approach similar to dry deposition models in the Canadian air quality model Global
Environmental Multi‐scale‐Modelling air quality and Chemistry (GEM‐MACH; Whaley et al., 2018). In this
system, ammonia emission potentials for soil and stomata (Γg and Γst,), specified by land use category, were
empirically derived from an extensive review of observational studies in a variety of environments. While
this approach captures spatial variations due to land use, the Γg and Γst values are constant so they do
not respond to timing and rate of fertilization. Massad et al. (2010) describe a similar approach where
ammonia emission potential is related to land use. However, their model considers the increases in Γst
and Γg associated with fertilizer application followed by an exponential decay back to background levels.
While this approach adds parameterized dynamics for response to fertilization, it requires additional input
for fertilizer application amount, type, and timing.

Some process‐based models include dynamic estimation of N concentrations in the soil and plant tis-
sues. For example, Riddick et al. (2016) describe a highly parameterized ammonia emission model for
the Community Land Model (CLM) that tracks the flow of agricultural N from both manure and syn-
thetic fertilizer and includes parameterizations for runoff, nitrification, denitrification, soil diffusion,
and volatilization. The NH3 compensation concentration is computed from the total ammoniacal nitro-
gen pool in the soil. For timing of fertilizer application, the CLM uses the spring planting date for corn
from the CLM4.5 internal crop model (Levis et al., 2012). Zhu et al. (2015) describe a similar bidirec-
tional ammonia flux model with parameterized soil ammonia pool that has been recently applied to
the GEOS‐Chem global atmospheric chemistry model. The soil N pool includes sources and sinks from
wet and dry deposition, nitrification, volatilization, and fertilizer application. The effects of soil nitrifica-
tion are parameterized by an exponential depletion of soil N assuming a 15‐day time scale. Daily
resolved fertilizer application rate is derived from annual total fertilization apportioned to the growing
season using the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index
(Hudman et al., 2012). A drawback of these types of parameterized process models is that they include
many uncertain parameters that are largely unconstrained by observations. Thus, while such models
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may include the major sources and sinks affecting the total ammoniacal nitrogen pool, the results may
have greater uncertainty than direct emission factor approaches.

A more holistic approach is to use a process‐based agricultural production model, which has key soil biogeo-
chemical processes, hydrology, and management practices, including fertilization, and is driven by atmo-
spheric conditions (e.g., meteorology and nitrogen deposition) consistent with air quality simulations. As
N fertilization varies by type, rate, and timing, depending on production types and geographical area, the
agricultural model can resolve soil physical and chemical properties on managed land much more realisti-
cally in time and space with different soil and micrometeorology conditions. Simulated soil ammonia con-
centration along with soil physical properties from the agricultural model can be directly input to
bidirectional NH3 modeling. There are many cropping systems (e.g., DSSAT (Jones et al., 2003), DNDC
(Li, 2000), EPIC (Williams, 1995), and STICS (Brisson et al., 2003)) developed over the years and regularly
applied worldwide in research and assessment studies. These systems differ inmodel structure and approach
to representation of complicated physical and biogeochemical processes (Brilli et al., 2017. The
Environmental Policy Integrated Climate (EPIC) model is an agricultural ecosystem model, which has been
developed with support from the U.S. Department of Agriculture (USDA, https://epicapex.tamu.edu/epic/)
since the early 1980s. The system is a comprehensive terrestrial model with key physical and biogeochemical
processes simulating plant growth, water and carbon balance, soil erosion, and nutrient cycling (e.g., N and
phosphorus) under the influence of soil, landscape, weather, climate, and management conditions
(Williams, 1995; Williams et al., 1984). The EPIC model has been extensively evaluated for many cropping
systems across the world and used by USDA assessment projects to examine impacts of management prac-
tices and climate on agricultural production, soil productivity, and nutrient runoff (Benson et al., 1989;
Rosenzweig et al., 2014; White et al., 2014).

Cooter et al. (2010) showed that bidirectional NH3 flux from managed agricultural soils can be reason-
ably estimated using a resistance and compensation point flux approach (Nemitz et al., 2000) and the
deposition model (Pleim & Ran, 2011) from the Community Multiscale Air Quality model (CMAQ,
https://www.epa.gov/cmaq; Byun & Schere, 2006) integrated with components of EPIC. Based on
their initial results, the Fertilizer Emission Scenario Tool for CMAQ (FEST‐C, https://www.cmascen-
ter.org/fest‐c/; Ran et al., 2011; Cooter et al., 2012) was first developed to integrate EPIC with a meteor-
ology and air quality modeling system—Weather Research and Forecast model (WRF, http://www2.
mmm.ucar.edu/wrf/users/; Skamarock et al., 2008) and CMAQ (WRF‐CMAQ). Using WRF‐CMAQ
weather and N deposition, the system facilitates EPIC simulations for 42 different production types,
with management practices corresponding to different agricultural production regions across the
conterminous U.S. (CONUS). FEST‐C can extract soil chemistry with N fertilizer information on agricul-
tural land from EPIC results, thus generating the necessary inputs for CMAQ bidirectional NH3 flux
modeling (Cooter et al., 2012). The FEST‐C system is released with an updated version of EPIC, which
is adapted to regional‐scale applications for CONUS. With the continuous support from U.S. EPA, FEST‐
C has now been enhanced by integrating the Soil and Water Assessment Tool (SWAT, https://swat.
tamu.edu/) modeling system (Arnold et al., 1998) with EPIC and WRF‐CMAQ for improving our under-
standing of agricultural production, weather, and N deposition impacts on hydrology and water quality
for large river basins (Yuan et al., 2018). A detailed description and assessment of the recent release of
FEST‐C V1.4 will be presented in an upcoming publication. With its multiple capabilities, the system is
now a valuable tool in integrated modeling for assessing interactions among land‐water‐air multimedia
processes.

The focus of this paper is on the description and evaluation of a new implementation of bidirectional ammo-
nia flux modeling in CMAQ coupled directly with FEST‐C EPIC for soil characteristics including NH3 con-
tent. Section 2 includes brief descriptions of the WRF, CMAQ, and FEST‐C systems along with detailed
description of the bidirectional ammonia flux algorithm in CMAQ, focusing on recent developments.
Evaluations of resulting NH3 gas and NH4

+ and SO4
2− aerosol air concentrations and NH4

+ wet deposition
compared to surface measurements and satellite retrievals are described in section 3. Section 4 provides
further discussion of the evaluation, including in‐depth analyses of case studies where the evaluation shows
particularly large discrepancies between model and measurements. Concluding remarks are given in
section 5.
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2. Model Description

A bidirectional NH3 surface fluxmodel was developed for application in regional to global air quality models
and evaluated in box‐model form compared to agricultural field measurements (Walker et al., 2013, 2006) as
described by Pleim et al. (2013). This study demonstrated that the bidirectional flux model can capture the
magnitude and dynamics of measured ammonia fluxes over a range of conditions with overall biases on the
order of the uncertainty of the measurements when using soil chemistry and moisture provided from simu-
lations by the EPIC agricultural model (Williams, 1995). The bidirectional NH3 flux model was then incor-
porated and tested in the WRF‐CMAQ coupled meteorology and air quality model (Bash et al., 2013).
However, the implementation described by Bash et al. (2013) differed from the box model study in the
way the soil chemistry was estimated. Rather than using soil ammonia content daily directly from EPIC,
the previous CMAQ implementation used EPIC simulated soil ammonia content only for initial conditions
and then estimated changes to soil ammonia content using EPIC‐simulated daily fertilization information
following Massad et al. (2010). The estimation of soil ammonia concentration also included CMAQ com-
puted evasion and deposition and EPIC nitrification algorithms adapted to CMAQ. However, other signifi-
cant N pathways such as fixation, mineralization, denitrification, runoff, percolation, and plant uptake,
which are fully accounted for in EPIC, are missing from the previous CMAQ implementation (Cooter
et al., 2012). Thus, a drawback to this method is that the soil ammonia concentrations would quickly diverge
from the EPICmodel simulations. Consequently, CMAQ simulations of ammonia concentrations would dif-
fer depending on initialization dates (Hogrefe et al., 2017) and meteorology conditions.

In this paper we describe a new implementation of bidirectional flux modeling that follows directly from the
box model demonstration presented by Pleim et al. (2013). The modeling system used in this study includes
EPIC, WRF, and CMAQ. Since this study focuses on modeling surface fluxes of ammonia, the new and
revised components of the system related to these processes are described.

2.1. The PX LSM and CMAQ Dry Deposition Model

The CMAQ model is a regional‐to‐local scale chemical transport model that can be either coupled to the
WRF meteorology model (Wong et al., 2012) or run sequentially using meteorological input from the
WRF model. The NH3 bidirectional flux model is developed as an adjunct to the CMAQ dry deposition
model (Pleim & Ran, 2011). The CMAQ dry deposition model (also known as M3DRY) is designed to be con-
sistent with the PX land surface model (PX LSM), which is one of the LSM options in theWRF system (Pleim
& Xiu, 1995; Xiu & Pleim, 2001). Thus, many of the parameters used in the dry deposition and bidirectional
NH3 modeling in CMAQ are inherited from the surface moisture flux modeling in the WRF PX LSM. In
addition, many of the key parameters for NH3 bidirectional surface flux model are obtained from model
simulations of FEST‐C EPIC as described below.

2.2. FEST‐C EPIC

The CMAQ bidirectional NH3 flux calculations require inputs describing the physical properties of the soil,
as well as NH3 content and agricultural land use data, all of which are generated using the FEST‐C interface.
The FEST‐C system is available from the Community Modeling and Analysis System (CMAS) Center
(https://www.cmascenter.org/) with the support from U.S. EPA. The released package is developed for
Linux system applications and comes with a Java‐based interface, an adapted implementation of EPIC for
WRF‐CMAQ regional grid domain applications, the required data sets, and built‐in tools (Ran et al.,
2018). The interface guides users through land use and EPIC input data generation, EPIC simulations with
WRF‐CMAQweather and N deposition input, and the generation of inputs required for CMAQ bidirectional
NH3 modeling from EPIC results. As EPIC is a field‐scale model, FEST‐C EPIC is adapted to CMAQ grid
domains covering CONUS at different resolutions and in any of the fourWRF projection coordinate systems:
longitude/latitude, Lambert Conformal Conic, Universal Polar Stereographic, and Mercator. Detailed infor-
mation on FEST‐C EPIC and FEST‐C interface tools is presented by Cooter et al. (2012) and the FEST‐C
user's guide (Ran et al., 2018). There are many updates in FEST‐C V1.4 including EPIC improvements
and enhanced tools. Thus, FEST‐C V1.4 is required for generating and extracting EPIC soil pH, porosity,
wilting point, cation‐exchange capacity, depth, moisture, and NH3‐N concentration, which are needed by
this new CMAQ‐bidirectional NH3 flux model.
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2.3. CMAQ NH3 Bidirectional Flux
2.3.1. Calculation of Soil Ammonia From EPIC Input
After an extensive model spin‐up period of typically 25 years (100 years for potatoes) using climatological
meteorology data, the EPIC model is run for the specific year to be modeled by CMAQ with the same
WRFmeteorology as used to drive CMAQ on the same spatial grid. FEST‐C EPIC also uses CMAQN deposi-
tion input. If WRF‐CMAQ is run in two‐way coupled mode, then the EPIC model simulation uses a pre-
viously run WRF‐CMAQ simulation to define the meteorological and N deposition inputs. Daily values of
all soil parameters needed to compute the available soil ammonia concentrations for each of 21 agricultural
production types that are either rainfed or irrigated (42 types total) are input to CMAQ. In CMAQ, the ratio
of NH4

+ to H+, typically denoted by Γg, is calculated for each agriculture type and then aggregated to the
model grid cell according to its fractional area. The average Γg value for the agricultural fraction combined
with the nonagricultural Γg, which is set to a natural background value of 20 (Zhang et al., 2010), for each
grid cell is used along with ground temperature Tg to compute the concentration of NH3 gas in the soil pore
space (χg) in two soil layers (1 and 5 cm) according to Nemitz et al. (2000) and Pleim et al. (2013):

χg ¼ Favail
A
Tg

10
−B=TgΓg (1)

where χg is in μg/m3, Γg ¼ NHþ
4½ �

Hþ½ � , and A (2.7457×1015) and B (10,378) are constants derived from the equili-
bria constants, and the factor Favail accounts for the fraction of total ammonia in the soil that is available for
volatilization. The concentrations of NH4

+ and H+ are derived from EPIC inputs for each of 42 agricultural
types. The molar concentrations of H+ are specified by each type on an annual basis from pH values with the
assumption that there is little daily variation in soil pH for managed agricultural soils. The molar concentra-
tions of NH4

+ are computed from daily EPIC estimates of the ammonia pool in the 1‐ and 5‐cm soil layers
and the soil moisture content of these layers as

NHþ
4 aq ¼

L1 NH3

d1w1
(2)

where L1_NH3 is total NH3 in soil layer 1, d1 is soil layer thickness of layer 1 (1 cm), and w1 is soil moisture.
The factor Favail in equation (1) accounts for the fraction of total soil ammonia that is in soil water solution
since the total ammonia in soil includes both the ammonium in solution and sorbed on soil particles.
Zhenghu and Honglang (2000) found that ammonia volatilization rates were negatively correlated with
the cation exchange capacity (CEC) and clay content. Vogeler et al. (2011) found that using CEC and clay
content best explained variation in the parameters for the Freundlich adsorption isotherms. Close correla-
tion of the magnitude of NH4

+ sorption to soil particles with CEC was also found by Ranjbar and Jalali
(2013), Elmacı et al. (2002), Zhang et al. (2007), Zhu et al. (2011), and Yu et al. (2011). While many studies
found that laboratory equilibrium experiments of ammonia soil adsorption were well explained by two or
three parameter isotherm adsorption models (e.g., Sieczka & Koda, 2016; Venterea et al., 2015; Vogeler
et al., 2011), they all stress that the parameters are specific to the soil condition and are therefore difficult
to generalize. When we implemented the sorption isotherm model described by Venterea et al. (2015) using
parameters specified by soil texture class derived from properties of agricultural soils compiled by Breuillin‐
Sessoms et al. (2017), the resulting available fraction was almost always less than 10% everywhere in the
CONUS domain. This result does not seem to be consistent with field observations. For example, Walker
et al. (2013) found an available fraction of about 55% in a corn field in eastern North Carolina (NC).

Since strong correlation of available fraction with CEC has been shown, we decided to implement a simple
parameterization following the EPIC model (Williams, 1995) as

Favail ¼ 1:−0:038×CEC with Favail>0:3 (3)

where Favail is used in the parameterization of volatilization in EPIC and CEC is in cmol/kg. This parame-
terization results in values for Favail that range from 0.3 to 1. Figure 1 shows the CEC and Favail values in soil
layer 1 for the 12‐km grid resolution CMAQ modeling domain. Clearly, this factor is a significant source of
uncertainty in the bidirectional flux model that warrants more study.
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2.3.2. Bidirectional NH3 Flux Calculation
The ammonia bidirectional flux calculation in CMAQ is a simple resistance model, which is essentially the
same as presented in Pleim et al. (2013). The key difference between the bidirectional flux model and the dry
deposition model is that concentrations at the surfaces are not 0. As shown in Figure 2 (reproduced from
Pleim et al., 2013, Figure 1) there are compensation concentrations in the leaf stomata and the ground (soil).
Thus, the fluxes via these pathways are two‐way; the flux is downward (deposition) if the air concentration is
greater than the surface compensation concentration and upward (emission) if the surface concentration is
greater. The surface compensation concentrations at the ground and leaves are the NH3 concentrations in
the soil pore air space or the stomatal cavity in Henry's law equilibrium with aqueous ammonium ion and
hydrogen ion in solution (in the soil water or in the apoplast leaf tissue) computed as equation (1). The soil
concentrations are computed from Γg values, which are computed from EPIC inputs as described above, and
stomatal concentrations are computed from Γst values specified by land use category adapted from Zhang
et al. (2010). In addition to stomata and soil some models also include compensation concentration and
bidirectional flux pathways for leaf litter (Nemitz et al., 2000) and leaf cuticles (Kruit et al., 2010). Field stu-
dies have often found very large values for litter emission potential, Γlitter, but also that the values are highly
dynamic and poorly understood (Flechard et al., 2013). For agriculture production land the EPIC model
simulates complete carbon, nitrogen, and phosphorus cycles including plant harvest and residuals. Thus,
N from the leaf litter should be included in the total nitrogen pool computed by EPIC.
2.3.3. Key Resistances
Complete description of the bidirectional resistance model is presented by Pleim et al. (2013). The formula-
tions for the key resistances to leaf cuticles and soil layers are briefly summarized here. The cuticle resistance
plays a particularly important role in ammonia fluxes from fertilized soils because of the large amount of
NH3 available for volatilization from applied fertilizer and the large and rapidly growing leaf area especially
during early to middle parts of the growing season (June–July). Much of the NH3 flux from the soil is
removed by deposition to the leaves both through stomata and the leaf cuticles. Pleim et al. (2013) estimated
that 78% of the ground NH3 emissions in a corn field in mid‐July were deposited to the canopy. Estimates of
73% canopy uptake for the same field study derived from in‐canopymeasurements by Bash et al. (2010) agree
well with the model calculations.

The cuticle resistance, Rw, is parameterized as a function of both relative humidity (RH) and the in‐canopy
NH3 concentration following laboratory experiments described by Jones et al., 2007 and Jones et al., 2007) as

Rw ¼ 1
LAI

Rwo

Heff

χc
χ ref

þ 1

� �
þ 100−max RH; 60ð Þð Þ þ Rwmin (4)

where LAI is the leaf area index, Heff is the effective Henry's law constant that includes effects of aqueous
dissociation, χc is the concentration in the canopy (μg/m3), RH is in percent (%), and the empirical constants
are Rwo= 125,000 s/m, χref = 1.0 μg/m3, and Rwmin = 20 s/m.

Figure 1. (a) The cation exchange capacity CEC from the EPIC model and (b) the available fraction Favail from equation (3).
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Soil resistance is another key resistance for bidirectional ammonia flux because it is a critical regulator of
flux from the soil where ammonia is often highly concentrated in the soil water in fertilized agriculture
lands. Pleim et al. (2013) tested several formulations for soil resistance and chose the soil resistance model
of Sakaguchi and Zeng (2009) based on box model comparisons to the field flux measurements described
by Walker et al. (2013). Soil resistance, Rsoil, is parameterized as

Rsoil ¼ Ldry
Dp

(5)

where Ldry, the characteristic length scale accounting for tortuosity through the soil surface dry layer, is a
function of soil moisture relative to saturation, and Dp, which is the gas diffusivity through the soil pores,
is computed from soil characteristics such as porosity, residual moisture content, and the slope of the reten-
tion curve. Detailed descriptions of Ldry and Dp are given by Pleim et al. (2013). Note that this calculation for
soil resistance is also used in the PX LSM for modeling evaporation from soil (Ran et al., 2016).

3. Evaluation

The WRF‐CMAQ‐EPIC system was run for the entire year of 2016 over the CMAQ CONUS 12‐km grid
domain. The impacts on air quality of the bidirectional NH3 flux modeling system are evaluated through
comparisons to ambient air concentrations from ground measurements and satellite retrievals, and wet
deposition measurements. Evaluation of the FEST‐C and EPIC components of the system will be presented
in a forthcoming publication.

3.1. Model Configuration

The EPIC inputs required for the CMAQ bidirectional flux model are generated using FEST‐C V1.4 with
WRF‐CMAQ weather and N deposition information. EPIC is configured with the variable daily curve num-
ber with depth soil water weighting for runoff estimation, modified Universal Soil Loss (MUSL) equation for
water erosion, Hargreaves method for daily evapotranspiration, curve number estimate for infiltration, 4‐
mm slug flow method for percolation and subsurface flow computation, and Armen Kemanian method
for denitrification (Doro et al., 2017; Gassman et al., 2005; Williams, 1995). The agricultural land hydrology
includes tile drainage processes, and the concentration of the CO2 level in atmosphere is set to be 404 ppm,
which represents the average background concentrations for 2016 estimated from measurements at Mauna
Loa, HI (https://www.esrl.noaa.gov/gmd/ccgg/trends/). Consistent with WRF‐CMAQ simulations, 2011

Figure 2. Resistance model schematic for bidirectional NH3 flux with leaf and soil compensation point concentrations
(reproduced from Pleim et al., 2013, Figure 1)
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National Land Cover Database (NLCD; Homer et al., 2015) and corresponding county‐level agricultural pro-
duction area census information are used in FEST‐C to generate agricultural land fractions for 42 grassland
and cropland types, which are required for both EPIC and CMAQ simulations.

The WRF model version 3.8.1 was run for the CONUS domain starting on 22 December 2015 and running
continuously through 31 December 2016. WRF model physics includes RRTMG shortwave and longwave
radiation (Iacono et al., 2008), Pleim‐Xiu land‐surface model (PX‐LSM; Pleim & Xiu, 1995; Xiu & Pleim,
2001), Asymmetric Convective Model version 2 planetary boundary layer (PBL) scheme (ACM2; Pleim,
2007a, 2007b), Morrison microphysics (Morrison et al., 2005), and Kain‐Fritsch version 2 subgrid cloud con-
vection model (Kain, 2004). Four‐dimensional data assimilation grid nudging was used continuously for the
entire simulation for temperature (T), specific humidity, and winds above PBL only, from 3‐hr increments of
North American Model (NAM) 12‐km analyses (Gilliam & Pleim, 2010). Also, indirect soil moisture and
temperature assimilation from surface analyses of 2‐m T and 2‐m RH were used in the PX LSM (Pleim &
Gilliam, 2009; Pleim & Xiu, 2003). Lightning data assimilation using data from the National Lightning
Detection Network (Orville, 2008) as described by Heath et al. (2016) helps to improve the simulation of con-
vective precipitation. TheWRF simulation was thoroughly evaluated through comparison to comprehensive
surface meteorology data and compiled in a publicly accessible report (U.S. EPA, 2018)

CMAQ model version 5.3 was initialized on 22 December 2015 and run continuously through 31 December
2016. The model was configured to use the CB6 gas‐phase chemical mechanism and AE7 aerosol model.
Anthropogenic emissions were provided from the 2016beta Emissions Modeling Platform (U.S. EPA,
2019). The CMAQ domain is same as for WRF but reduced by five grid cells on each of the four boundaries.
Initial and boundary conditions were extracted from hemispheric WRF‐CMAQ simulations, which used a
similar but slightly different configuration for CMAQ. CMAQwas run both with and without the new bidir-
ectional NH3 flux model. The run with the bidirectional model is referred to as the bidi run, while the run
without the bidirectional model is referred to as base. The base simulation uses agricultural fertilizer emis-
sions using monthly county level emission factors based on early versions of FEST‐C and CMAQ with the
bidirectional ammonia flux model as described in U.S. EPA (2019).

3.2. Comparisons to Observations

When ammonia gas is released into the air some will transform into aerosol form, while the rest remains in
the gas phase. The amount that becomes aerosol ammonium (NH4

+) depends on the concentrations of
anions in the air, typically sulfate, nitrate, and chloride, which can combine with ammonium to form ammo-
nium sulfate ((NH4)2SO4), ammonium bisulfate (NH4HSO4), ammonium nitrate (NH4NO3), and ammo-
nium chloride (NH4Cl). Ideally, an evaluation of ammonia fluxes would include comparisons of model
predictions to ambient concentration of NHx that would include both gas and aerosol forms (NHx = NH3

+ NH4
+). Unfortunately, NHx is not currently measured at national networks in the U.S.. Therefore, evalua-

tion of CMAQ entails a combination of gas, aerosol, and wet deposition measurements. The CMAQ model
with the bidirectional NH3 surface flux is evaluated for surface level NH3 concentration through comparison
to surface site measurements at the National Atmospheric Deposition Program (NADP) Ammonia
Monitoring Network (AMoN) and surface NH3 concentration retrievals from the Cross‐Track Infrared
Sounder (CrIS) satellite sensor. Wet deposition of NH4

+ is evaluated through comparison to the NADP
National Trends Network (NTN). Ammonium and sulfate aerosol components are evaluated through com-
parisons to the Chemical Speciation Network (CSN), the Clean Air Status and Trends Network (CASTNET),
and Southeastern Aerosol Research and Characterization (SEARCH; Edgerton et al., 2005) networks.

3.3. Ammonia Gas Evaluation With AMON

The AMoN measures ambient gas‐phase ammonia on a 2‐week accumulated average basis at 66 sites across
the CONUS (Puchalski et al., 2011). Only the data flagged as valid (AMoN valid flag “A” or “B” and replicate
not equal to “T”) are included in the analysis. Figure 3 shows monthly averages of all valid AMoN measure-
ments pairedwithmodel results extracted at AMoN site locations and averaged over the same 2‐week periods
and then monthly. The two sets of CMAQ model results compare model simulations with and without the
bidirectional treatment of ammonia fluxes using otherwise identical model configurations and inputs. The
base simulation (labeled base in subsequent figures and discussion) greatly underpredicts NH3 concentra-
tions compared to AMoN, particularly for the warm season (e.g., May–September), when the monthly
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median model values are biased low by about 75%. The simulation with the bidirectional fluxes (labeled bidi
in subsequent figures and discussion) predicts much greater NH3 concentrations that compare more
favorably with the AMoN measurements particularly during the growing season. The median values from
the bidi run are within 20% of the observed median values for the warm season (May–September),
although the modeled interquartile ranges (length of bars) are smaller than the observations. For winter
months, December through March, the bidi model underpredicts at the AMoN sites by an average of 62%.
However, since NH3 volatilization is an exponential function of temperature (equation (1)), NH3

from managed agriculture soils is likely to be a much smaller fraction of total ammonia emissions in the
winter than during the growing season, which suggests that other sources of ammonia emission are
underestimated by the model.

Measured ammonia concentrations averaged over the warm season (May–September) at each AMoN site
where at least 75% of the data were valid, and comparable modeled (bidi) concentrations are shown in
Figure 4. Unfortunately, much of the most intensely cultivated lands, particularly the Great Plains from
Northern Texas up through the Dakotas and Minnesota, are not well covered by the AMoN network. The
model and measurements are in general agreement that the higher NH3 concentrations occur in the
Central Valley of CA (only one site), the Central Plains as represented by only four sites clustered in south-
east Nebraska and northeast Kansas, and the Corn Belt of Illinois, Indiana, Ohio, Wisconsin, and Michigan.
Note that the high concentrations in southeastern NC shown in the measurements and model are in an area
of concentrated hog facilities.

The scatterplot of measured and modeled concentrations at AMoN sites for May through September
(Figure 5) shows considerable scatter for both model simulations but greatly reduced bias, slightly reduced
error, and increased correlation for the bidi case compared to the base case.

Figure 3. Monthly average NH3 concentrations at Ammonia Monitoring Network (AMoN) sites for bidi (red) and base
(dark blue) model runs and measurements from AMoN (light blue). The black symbols with connecting lines indicate
median values. Lower and upper ends of the boxes indicate the 25th and 75th percentiles of each distribution. The number
of observations per month is shown above the x axis.
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3.4. Evaluation of Aerosols

The partitioning of total ammonia (NHx) into gas‐phase and aerosol‐phase ammonia depends on concentra-
tions of the gas‐phase NH3 and HNO3 and aerosol‐phase ammonium, nitrate, sulfate, calcium, potassium,
magnesium, sodium, and chloride. The thermodynamic equilibrium among these species, which depends
strongly on temperature and humidity, is computed by the ISORROPIA v2.1 (Fountoukis & Nenes, 2007;
Nenes et al., 1998). Note that sulfate exists entirely in the aerosol phase and depends on SO2 emissions
and both gas and aqueous phase oxidation of SO2 to SO4

2‐. Modeled concentrations of gas phase NH3 and
aerosol phase NH4

+ are influenced by many other chemical, physical, and meteorological processes in addi-
tion to ammonia emissions and deposition. Thus, evaluation of NH3 emission models should also include
evaluation of aerosol species such as ammonium, nitrate, and sulfate.

There are two national networks thatmeasureNH4
+ aerosol components, CSN andCASTNET, in addition to

the SEARCH regional network. CSN and SEARCHmeasure speciated aerosols from 24‐hr average filter sam-
ples every 3 days and CASTNET uses weekly filter packmeasurements. Figure 6 shows the bidi model bias of
aerosol PM2.5 NH4

+ concentrations averaged over the warm season (May–September). At most CSN sites
(other than CA) the model overestimates the reported measured concentrations while the model generally
underestimates concentrations at CASTNET and SEARCH sites. At locations where CSN sites are close to
CASTNET and SEARCH sites the model bias is often of opposite sign. Part of this discrepancy may be that
CSN is designed to represent urban sites, while CASTNET is designed to characterize background rural

Figure 4. Ammonia concentrations (μg/m3) at Ammonia Monitoring Network (AMoN) sites averaged for
May–September 2016 for (a) AMoN measurements and (b) Community Multiscale Air Quality (CMAQ) bidi.
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locations. However, discrepancies between CSN and SEARCH may be more indicative of measurement
artifacts. Pye et al. (2018) analyzed ammonium to sulfate ratios measured by different instruments and
compared to thermodynamic models during the Southern Oxidant and Aerosol Study (SOAS). They
concluded that CSN tends to underestimate NH4

+ concentrations, while SEARCH measurements agree
well with the thermodynamic models and the SOAS Monitor for AeRosols and Gases in Ambient air
(MARGA) measurements. Although Pye et al. (2018) did not analyze the NH4

+ measurements from

Figure 5. Observed vs modeled NH3 concentration at Ammonia Monitoring Network (AMoN) sites over May to
September 2016 for bidi (blue) and base (red).

Figure 6. Biases in modeled ammonium PM2.5 (μg/m3) compared to Chemical Speciation Network (CSN; circles),
CASTNet (triangles), and Southeastern Aerosol Research and Characterization (SEARCH; squares) networks averaged
over May to September 2016.
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CASTNet, Figure 6 shows that CASTNet is similar to SEARCH when sites are in close proximity. Therefore,
CASTNetmeasurements of NH4

+ are likelymore realistic than CSN. Considering the likely greater fidelity of
CASTNet and SEARCH than CSN, Figure 6 suggests that CMAQ tends to underestimate NH4

+ (e.g., biases at
CASTNet eastern sites are mostly −0.1 to −0.25 μg/m3 and at western sites mostly −0.05 to −0.2 μg/m3).

Given the strong dependence of NH4
+ on SO4

2−, comparison to ambient sulfate measurements is also rele-
vant to ammonia model evaluation. Figure 7 shows model PM2.5 SO4

2− concentrations averaged over the
warm season (May–September) compared to measured SO4

2− concentrations from the Interagency
Monitoring of PROtected Environments (IMPROVE), CSN, CASTNet, and SEARCH networks. With the
exceptions of the northwest and a few sites around the Great Lakes and New England, the model generally
underestimates SO4

2− compared to all four networks. These results suggest that the model's tendency to
underestimate NH4

+ may be in part related to underestimation of SO4
2−. Modeled and measured PM2.5

NH4
+ and PM2.5 SO4

2− concentrations have very similar spatial patterns (not shown) with peak concentra-
tions along the Ohio River where SO2 emissions are greatest.

3.5. Evaluation of Wet Deposition of Ammonium and Nitrate

The NADP NTN wet deposition network measures precipitation chemistry on an accumulated weekly basis.
Since precipitation amount is also measured, chemical wet deposition flux is determined. An advantage of
wet deposition measurements is that both gas and aerosol phase NHx should be nearly equally scavenged
by precipitation since ammonia gas will be almost entirely dissolved in cloud water (Seinfeld & Pandis,
1998), which means that these comparisons are less affected by gas‐aerosol partitioning. Figure 8 shows
monthly distributions of average NH4

+ wet deposition in kg/ha per week from the NTNmeasurements com-
pared to CMAQ. During the summer months (June–September), the CMAQ bidi run agrees well with NTN
for both the median values and the 25–75% distributions, while the base is much lower. Observed seasonal-
ity, however, is not well replicated by either model simulation. The NTN data show peak wet NH4

+ deposi-
tion in April and May, while CMAQ results peak in June and July. A possible reason for under prediction of
wet deposition in the springtime months could be underprediction of the precipitation. However, Figure 9
shows that weekly accumulated precipitation at the NTN sites is not underpredicted by the model for
April and May. Note that Bash et al. (2013) also found high wet deposition amounts in April and May of
2011 that the models, both base and bidirectional, underpredicted.

Spatial plots of NADP NTN measured and CMAQ bidi modeled NH4
+ wet deposition for the warm season

(May–September) are shown in Figure 10. While the model reproduces well the overall pattern of high and
low values, the model shows large negative biases at sites mainly in the northern Plains and eastward into
Minnesota, Iowa, andWisconsin. It is interesting that the greatest observed values are near the concentrated
hog production operations around Iowa and southeastern NC, while the model does not show such peak
values in these regions. This suggests that either NH3 emissions from hog operations are underestimated
or the wet scavenging of gas and/or aerosol ammonia is underestimated.

3.6. Cross‐Track Infrared Sounder Satellite

The Cross‐Track Infrared Sounder Satellite (CrIS) instrument is deployed aboard polar orbiting Suomi
NPOESS Preparatory Project (SNPP) satellite in a Sun‐synchronous orbit with overpass times of ~01:30
and ~13:30 local time. NH3 is obtained from CrIS radiance measurements by applying the CrIS Fast
Physical Retrieval (CFPR) algorithm, which provides ammonia volume mixing ratio profiles; the peak sen-
sitivity of the CFPR retrieval is in the boundary layer, typically around 850–750 hPa, but it can be close to the
surface under ideal conditions (Shephard & Cady‐Pereira, 2015). CrIS NH3 has been evaluated against mea-
surements from Fourier Transform Infrared Radiometer (FTIR) instruments from the Network for the
Detection of Atmospheric Composition Change (NDACC; Dammers et al., 2017); CrIS NH3 showed good
agreement with the FTIR, though biased slightly low for low amounts. Level 3 surface volume mixing ratio
monthly average fields at 0.1‐degree resolution derived from daytime (13:30 LT) retrievals are re‐gridded to
the CMAQ 12‐km grid cells. The CrIS values are presented in Figures 11–14 along with similar maps of
CMAQ bidi NH3 concentrations averaged over each month from daily 13:30 values. Note that there is not
an exact correspondence between observed andmodeledmonthly averages because CrIS, due to clouds, does
not return valid data every day of the month, although there are usually 20–30 valid observations per
grid cell.
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Figure 7. Biases in modeled sulfate PM2.5 (μg/m3) compared to Interagency Monitoring of PROtected Environments
(IMPROVE; circles), Chemical Speciation Network (CSN; triangles), CASTNET (squares), and Southeastern Aerosol
Research and Characterization (SEARCH; diamonds) networks averaged over May to September 2016.

Figure 8. Monthly average ammonium wet deposition at National Atmospheric Deposition Program (NADP) National
Trends Network (NTN) sites from measurements (light blue), Community Multiscale Air Quality (CMAQ) bidi (red)
and CMAQ base (dark blue). The black symbols with connecting lines indicate median values. Lower and upper ends of
the boxes indicate the 25th and 75th percentiles of each distribution.
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The CrIS monthly average concentration maps reveal far more information on the spatial distribution of
ammonia concentrations than can be discerned from the AMoN network. An obvious difference between
the CrIS maps and the model maps is in very low concentration conditions, especially in the colder months,
where the background color is different. Since the detection limit for the CrIS retrievals is about ~0.5 to 1 ppb
(Kharol et al., 2018; Shephard & Cady‐Pereira, 2015), and nondetects have not been accounted for in this
Level 3 product, the lowest gridded values are around 1 ppb while the model does not have a lower limit
so remote areas have values very close to zero. Over high emission land areas the model results are much
more similar to the CrIS results. Comparing both the CrIS and model plots to the agriculture area fraction
in each grid cell (Figure 15) shows that the highest NH3 concentrations do not correspond to the areas with
greatest crop and pasture coverage, which indicates that simple schemes that scale emissions by crop area or
specify Γg values by land‐use categories, are not adequate. Factors such as fertilizer amount and type, soil
type, soil moisture, and soil pH are all critical factors that influence NH3 flux.

Monthly average 13:30 NH3 concentrations from the bidi model compared to the CrIS data show general
similarity of spatial distributions with highest concentrations in June and July over the United States.
Compared to CrIS, the model underpredicts NH3 concentrations in the spring (March–May) over most of
the modeled region but overpredicts in the CA Central Valley all year round. Another significant difference
is that modeled NH3 is much greater than CrIS NH3 in Iowa and southeastern NC, which are both hot spots
for intensive hog production. This is an opposite result from the NH4

+ wet deposition comparisons at NADP
NTN sites in these areas, where the model underestimates NH4

+ wet deposition (Figure 10). Thus, these
results support the hypothesis that scavenging of NHx is underestimated rather than an underestimation
of emissions from hog facilities. Since the model substantially overestimates gas NH3 concentrations com-
pared to CrIS but does not seem to overestimate aerosol NH4

+ concentrations (Figure 6; although there
are not many measurements sites in these areas other than the biased CSN sites), this suggests that scaven-
ging of NH3 gas in particular may be underestimated by the model.

Figure 9. Comparison of modeled weekly precipitation for April and May 2016 to measurements at National Trends
Network (NTN) sites.
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A striking feature of bothmodel and CrISmaps is the high NH3 concentrations in the north Texas panhandle
across the Oklahoma panhandle, up through western Kansas and into Nebraska even though the fractional
cropland coverage is less than many other areas with lower concentrations. Concentrations in these areas
are very high in the CrIS maps from March through August, while the model shows comparable concentra-
tions mainly in June through August. One possible reason for the relatively high NH3 concentrations in the
western High Plains is the higher soil pH values, as is shown in Figure 16 and discussed further in the next
section. Also, the lower NH3 values in the agricultural areas further east, near the Ohio River, may be due to
more NHx in the aerosol phase because of high SO2 emissions and high aerosol sulfate concentrations.

4. Discussion

Overall the bidi model seems to underpredict ammonia gas and ammonium aerosol concentrations but to a
far lesser degree than the base model. For example, the model shows a low bias in NH3 concentration of 20%
compared to AMoN measurements and a low bias in NH4

+ aerosol concentration of 35% compared to

Figure 10. Ammonium wet deposition at National Atmospheric Deposition Program (NADP) National Trends Network
(NTN) sites accumulated for May–September 2016 for (a) NADP NTN measurements and (b) Community Multiscale Air
Quality (CMAQ) in kg/ha.
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CASTNET measurements averaged over the warm season (May–September). This suggests that net surface
fluxes from agricultural soils plus other NH3 emissions may be underestimated. Comparison of monthly
averaged concentrations to CrIS retrievals shows that during the warmer months, the modeled NH3

concentrations are less than CrIS in most of the predominantly agricultural regions. However, a few areas
stand out where the model concentrations are consistently greater than CrIS over many months. Two
areas overpredicted compared to CrIS are the northern half of Iowa into southern Minnesota and
southeastern NC, which are the two biggest hog producing areas in the country. The Central Valley of CA
is also persistently overpredicted compared to CrIS. Since peak sensitivity in the Central Valley for CrIS
retrievals is at about 900–800 hPa, and the PBL mixed layer is often quite shallow, especially in the cooler
months, uncertainty at the surface is much greater with substantial high and low biases. The Central
Valley includes intensive agricultural production, much of which is irrigated, and other significant

Figure 11. Comparison of ground level NH3 concentrations between Community Multiscale Air Quality (CMAQ) bidi (upper maps), and Cross‐Track Infrared
Sounder (CrIS) satellite retrievals (lower maps), averaged for January, February, and March 2016.

Figure 12. Comparison of ground level NH3 concentrations between Community Multiscale Air Quality (CMAQ) bidi (upper maps), and Cross‐Track Infrared
Sounder (CrIS) satellite retrievals (lower maps), averaged for April, May, and June 2016.
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sources of ammonia emissions such as animal feeding operations and mobile sources. While analysis of
other (nonfertilizer) NH3 emission sources such as from animal feeding operations is beyond the scope of
this paper, it is interesting to investigate episodes of high NH3 concentration associated with very large
upward surface fluxes from the NH3 bidirectional model.

Figure 17 shows an example of the surface flux of NH3 on June 24 at 20 UTC where positive values indicate
upward evasive fluxes and negative values are downward dry deposition fluxes. The white areas indicate
either nearly zero flux (e.g., ocean) or negative (deposition) fluxes. In the colored areas the flux is upward
from the surface to the air. While the areas with the greatest upward flux varies day to day depending on
meteorology, soil chemistry, crop type, and growth stage, the same areas in the Central Valley of CA, the
Snake River Valley in Idaho, and the western High Plains in northern Texas, western Kansas, Eastern

Figure 13. Comparison of ground level NH3 concentrations between Community Multiscale Air Quality (CMAQ) bidi (upper maps), and Cross‐Track Infrared
Sounder (CrIS) satellite retrievals (lower maps), averaged for July, August, and September 2016.

Figure 14. Comparison of ground level NH3 concentrations between Community Multiscale Air Quality (CMAQ) bidi (upper maps), and Cross‐Track Infrared
Sounder (CrIS) satellite retrievals (lower maps), averaged for October, November, and December 2016.

10.1029/2019MS001728Journal of Advances in Modeling Earth Systems

PLEIM ET AL. 2950



www.manaraa.com

Colorado, and South Dakota often stand out with high upward fluxes. The relatively high soil pH in these
areas as shown in Figure 16 is a key reason for the large fluxes. The fluxes are governed by the concentration
gradient between surface and air, and the soil concentrations are proportional to Γg as shown in
Equation (1). Since Γg is the ratio of ammonium ion to the hydronium ion, one unit difference in pH trans-
lates to a factor of 10 difference in Γg.

Figure 15. FEST‐C generated area fraction of each 12 km grid cell classified as cultivated crops and pasture/hay from
National Land Cover Database (NLCD) in the U.S. and Moderate Resolution Imaging Spectroradiometer (MODIS) land
use data for Canada and Mexico.

Figure 16. Soil pH averaged over all 42 crop types from Environmental Policy Integrated Climate (EPIC) model simula-
tion for 2016.
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To better understand the very high concentrations in the Central Valley of CA simulated by the CMAQ bidi
compared to CrIS (Figures 11–14), we investigate the model calculations for selected extreme high concen-
tration episodes. For example, the peak modeled NH3 concentration on 30 June of 233 ppb occurred at 03
UTC (8 p.m. PDT) in the San Joaquin Valley about halfway between Fresno and Bakersfield. As is typical
of most areas in the Central Valley, this particular 12‐ × 12‐km grid cell is mostly agriculture with 65% cover-
age by crops and 15% coverage by fertilized grasslands. Although there are four dominant crop types and
four main grass types, the high value of Γg is mainly the result of irrigated cotton even though it only
accounts for 8.8% areal coverage. The reason for the dominance of irrigated cotton in this cell is a combina-
tion of high pH (7.75), relatively dry soil (0.08 by volume) and very high amount of ammonia loading in the
surface soil layer (29.6 kg/ha). These values result in a calculation for Γg of 15,000,000, which, when
weighted by the 8.8% area, contributes 1,300,000 to the grid cell average of 1.9 million. The ammonia loading
in this instance is anomalous compared to the other main crop types in this cell which range from 0.26 kg/ha
for irrigated other crops to 2.8 for irrigated alfalfa. Other areas with significant coverage by irrigated cotton
such as in the Mississippi River Valley do not result in such high Γg values and fluxes even though there are
occasionally similar large amounts of soil ammonia because of lower pH and wetter soil conditions.

In another location in the Central Valley near Merced on 1 June at 03 UTC (8p.m. PDT) the model simulated
NH3 concentration of 214 ppb. While the largest crop fraction in this cell is classified as irrigated other crops
(38%), which ismostly almond groves, the NH3 fluxes are dominated by extremely high Γg values for irrigated
corn silage, which only accounts for 12% of the area. Again, the main reason for the high calculation of Γg is
the anomalously high soil ammonia loading from FEST‐CEPIC (28.3 kg/ha). Thus, it is not a single crop type
responsible for the episodes of very high fluxes that result in extreme NH3 concentrations in the Central
Valley but rather sporadic unrealistically high soil ammonia loading for different crop types. The application
of the EPICmodel, which was designed as a field scale model, to the gridded domain over the entire CONUS
requires regional and county level parameterizations and soil data (Cooter et al., 2012). Further improve-
ments in these parameterizations and data sets should reduce the frequency of unrealistic results.

5. Conclusions

The new implementation of ammonia bidirectional surface flux in the WRF‐CMAQmodeling system is clo-
sely linked with the EPIC agricultural model through the FEST‐C interface. The daily EPICmodel simulated
parameters including soil ammonia content, soil pH, soil moisture, and other soil characteristics (CEC,
porosity, wilting point) are critical for calculating the soil emission potential, which defines the soil

Figure 17. Ammonia surface flux (g · ha−1 · hr−1) on 24 June 2016 at 20 UTC.
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compensation concentration that is the primary source for the surface‐to‐air flux. EPIC is a comprehensive
process‐based agro‐ecosystem model that has been successfully used worldwide (e.g., Edwards et al., 1994;
Rosenzweig et al., 2014; Wriedt et al., 2009). The model is adapted to regional applications in FEST‐C, and
the system performs reasonably well given regional‐management representations (Cooter et al., 2012).
Thus, the coupledWRF‐CMAQ‐EPIC system is a significant advancement over other air quality models with
bidirectional ammoniafluxes. Furthermore, with the system being linkedwith the hydrology andwater qual-
ity SWAT model (Yuan et al., 2018), the WRF‐CMAQ‐EPIC‐SWAT becomes a valuable tool for integrated
multimedia modeling assessments of interactions among air‐land‐water processes.

The key components of the ammonia bidirectional fluxmodel include the various resistance parameters that
define the flux pathways to and from the soil and plant stomata and cuticle through the canopy. Many of
these resistances are inherited from the dry deposition model in CMAQ (M3DRY; Pleim & Ran, 2011); some
of which, aerodynamic resistance, boundary layer resistance, and stomatal resistance, are also used in the
evapotranspiration model in WRF and then passed to CMAQ. The WRF‐CMAQ system is designed to use
the PX LSM, which features a data assimilation scheme that adjusts soil moisture and temperature to mini-
mize errors in air temperature and humidity (Pleim & Gilliam, 2009; Pleim & Xiu, 2003). Therefore, para-
meters including soil moisture and temperature and the above‐mentioned resistances that are all
important to the bidirectional flux calculations are constrained by the data assimilation scheme and parame-
terized consistently. Other key resistances for the ammonia bidirectional flux model include soil resistance,
in‐canopy aerodynamic resistance, and cuticle resistance, all of which are quite uncertain and need further
field experiment research. The uncertainties in these processes are not only in the parameterizations but also
in the spatial heterogeneity of key quantities such as soil moisture, LAI, and canopy structure at the
subgrid scale.

Overall, the coupled WRF‐CMAQ‐EPIC system with new bidirectional ammonia flux model is a significant
improvement over the base methodology of prescribing fertilizer ammonia emissions from the NEI. Since
direct measurements of NH3 fluxes over the CONUS domain are not available, evaluation of the model must
be inferred frommeasurements of ambient concentrations of gas and aerosol concentrations and wet deposi-
tion. The combined analysis shows that the CMAQ bidi model well represents all three forms of ammonia
with a relatively small negative bias. Given the uncertainties in many model parameters, these biases could
easily switch to overestimation or larger underestimation with small adjustments to a few key parameters.
Future research could investigate parameter sensitivities through combined parameter uncertainty experi-
ments like sensitivities studies performed for PBL models (e.g., Nielsen‐Gammon et al., 2010; Yang
et al., 2017).

The combined evaluation also gives insight into other aspects of model performance such as the conclusion
that the model may be underestimating wet scavenging of NH3 gas since NH3 concentrations are overesti-
mated in the high emission areas near concentrated hog production while wet deposition of NH4

+ is under-
estimated in these areas. Comparisons to CrIS retrievals are especially valuable for understanding themodel's
mechanistic underpinnings. For example, the distinct pattern of high NH3 concentrations in the Central
Valley, the Snake River Valley, and the western High Plains that is evident in the CrIS maps is also shown
in themodelmaps and are all areas with high soil pHwhich results in highNH3 fluxes. The CrIS comparisons
also demonstrate model limitations such as the underestimation of NH3 concentrations in the spring. Since
the comparison of wet deposition against NADP NTN measurements also shows underestimation in the
spring, it is likely that the model is underestimating the NH3 fluxes during these months.

Analysis of the 2016 WRF‐CMAQ‐EPIC simulations reveals some issues that cause unrealistically high
fluxes and NH3 concentrations. High soil ammonia content along with high pH and dry soil results in extre-
mely high Γg values that produce very large fluxes particularly in the Central Valley of CA. The anomalously
high soil ammonia contents for particular crop types in some areas warrants further examination in the
FEST‐C EPIC system. As FEST‐C EPIC is configured with regional‐scale management representations, dis-
crepancies at the local scale such as watershed, farms, and grid cells are expected. The large number of para-
meterizations inherent in the EPIC model and the extension to the CONUS domain understandably give
sporadic consequential anomalies. As the system is further applied, evaluated, and refined in all components
(WRF, CMAQ, EPIC) with improved land use, soil, and management representations at finer scales such
errors will likely be reduced.
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Disclaimer

Although this work was reviewed by EPA and approved for publication, it may not necessarily reflect official
Agency policy. Mention of commercial products does not constitute endorsement by the Agency.
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